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Introduction

During the last decade, the philosophy of computer science has carved an important space within 
the landscape of philosophical investigations. The range of questions and problems it addresses 
is wide and varied: the methodology of design, the ontology and semantics of computational 
artefacts, abstraction and implementation, to name a few. This chapter focuses strictly on the 
philosophical interpretation of the notion of information within Computer Science.

The centrality of information in Computer Science is indisputable: the discipline is 
hardly comprehensible when abstracted from the conceptualization and use of this notion. 
(Denning 1985) defined Computer Science as “the body of knowledge of information-
transforming processes” and (Hartmanis, Lin 1992) as “the study of information” in itself. 
Although the debate on the nature of this discipline is far from being settled, these two early 
definitions refer to information as an essential concept. A fortiori, information represents an 
optimal conceptual tool to explore the philosophy of computer science.

Given its ubiquity, information risks to become a misleading concept. A philosophical 
approach to the role of information in Computer Science requires, in the first place, 
articulating the actual configuration of the discipline. A list of the main research areas within 
academic departments and research institutions can be roughly given as follows:1

1	 Algorithms and Data Structures
2	 Programming Languages
3	 Architecture
4	 Operating Systems and Networks
5	 Software Engineering
6	 Databases and Information Retrieval
7	 Artificial Intelligence and Robotics
8	 Graphics
9	 Human-Computer Interaction
10	Data mining and Machine Learning
11	Bioinformatics
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A quick overview of this list reveals the well-known methodology of the Level of 
Abstraction (LoA, see Chapter 7) at work, including all aspects from the very concrete to 
the formal, from the isolated act of computation to its complex environment: the formal 
structures underlying data and their algorithmic treatment (1); their implementation in 
language (2) and use for program design (5); the design and construction of (networks of) 
hardware to manipulate (3 and 4), visualize (8) and process data (6); data analytics and its use 
to lead automatic processes (10); the relation between machine and the user (9); the study of 
autonomous agents (7); the mechanical engineering of living systems (11).

This familiar way of representing the work of computer scientists tells us that the syntactic 
(see Chapter 4), the semantic (see Chapter 6) and the procedural (see Chapter 9) notions of 
information are all at work in different areas of Computer Science. Our task is to approach 
information focusing on the computational model, from the low-level processing of circuitry to 
the higher level of design, to sketch the philosophical issues that arise. For this reason, we will 
focus on the standard notion of digital computational system: we will show how the LoAs are 
structured, and will do so in terms of an epistemology of control and an ontology of syntax and semantics 
through the relation abstraction-implementation, i.e. the linking of a syntactic domain (abstraction, 
symbol manipulation) to a semantic one (domain of objects). This relation is considered at the 
core of the LoAs structure in Computer Science, see (Rapaport 1999). In the second section 
we start from the lowest possible level of abstraction, where information is electric inputs 
running on wires; in the third section we consider how that level is controlled through syntax; 
in the fourth section we move to the semantics of programming languages and their control 
of algorithmic structures; in the fifth section we investigate the intentional stance behind the 
programming and algorithm design practice, and in the sixth section we summarize our analysis 
of the information flow within the computational system, analyzing briefly how programs are 
interpreted and checked.

Information inside the computing machine: structured data

In the long-standing philosophical debate about what Computer Science is, the mechanical 
formulation of the computational process is central. (Newell et al. 1967) defined Computer 
Science as “the science of computers and related phenomena”; later (Newell, Simon 
1976) rephrased it as “the empirical study of computer related phenomena”. Under this 
interpretation, the core business of Computer Science is the material execution and 
mechanical realization of those information-transforming processes referred to by (Denning 
1985). The physical core of a modern computer is the Central Processing Unit, roughly 
composed by:

•	 arithmetic and logic unit, for the data processing;
•	 registers, for their storage;
•	 program counter and instructions register, to store the machine state and current 

operation of the program;
•	 control unit: for the coordination of input/output devices.

While we are not strictly interested in the actual physical functioning of a CPU, we want 
to investigate which kind of information is at work at the physical level of the computing 
machine. The technical, well-known answer is that computing machinery at the physical 
level deals with binary digits (bits) expressing discrete, exclusive ON/OFF states of electrical-
magnetic input. Philosophically, this description is still incomplete: the information flowing 
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on wires is not simply 1s and 0s of bits randomly produced for the processing unit to operate 
on. These bits need to be structured and processed according to rules. Let us make an easy 
example. If we wire a switch to a LED (Light Emitting Diode) and connect it to a 5v supply on 
a breadboard, the effect is to turn the light on; if the switch is turned to OFF, so does the light. 
If we bypass first the wire through an inverter (a digital circuit which inverts the value passed to 
it, logically corresponding to a negation, see the diagram below), the effect is what we expect: 
when the switch is ON, the light will stay OFF; when the switch is OFF, the light will go ON 
(Figure 10.1).

If we combine two wires, each connected to a switch, through an OR gate with one bit 
output to a LED, then the output will be ON if at least one of the two switches is ON (see 
Figure 10,.2).

With these simple cases in mind, we can already make some observations:
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1	 the input is given by a variable x (possibly composed by more than one bit) with value 
0 or 1;

2	 there is an output y whose value depends on x;
3	 there is some rule establishing the dependency relation between x and y; for the inverter 

rule, such dependency is explained by saying that “if x=0 then y=1 and if x=1 then 
y=0”; for the OR rule, the dependency is explained by saying that “if x1 or x2=1 then 
y=1 and if both x1 and x2=0 then y=0”.

The ontological domain of electrical inputs is an implementation; its structure is 
controlled in terms of value assignment, value dependency and rule execution.2 A CPU and 
the board on which it is installed are just a more complex set of such structuring, including 
other essential Boolean circuits (implementing other logical operations, e.g. AND, XOR), 
further modified by the capacity to store values for future uses (memory), the ability to locate 
specific inputs (location assignment) and organize complex instructions (coordination). 
Hence, at this level, information corresponds to data as structured, physically evaluated 
variables, where structure control is meant to associate electrical charges to the realization of 
actions (Figure 10.1).

Look at Figure 10.3 below and let us unpack this definition. The pure syntactical, 
physical elements (electrical charge) create distinction or difference in the system, as the result 
of the evaluation of an empty element (value assignment function). The empty element in 
question, or variable, is an abstraction from the allocated memory space or physical wire 
taking a value (1,0). Its evaluation is the way difference is manifested. In (Floridi 2011, pp.85–
86), difference is specified as de re (lack of uniformity in the real world) or de signo (lack of 
uniformity between at least two signals). In the context of electrical values manifested in bits, 
one is dealing with a difference of the second kind (de signo), coupled with a physical effect 
that occurs in the real world (de re), be it simply a charged wire or a lightened up LED. In the 
context of physical computing systems, a difference de re allows to trace a difference de signo, 
while it is always the latter that causes the former. While data processing is most commonly 
interpreted by digital bits, there are examples of analog computers that essentially change the 
understanding of the data worked on, by forms of mechanical (like the physical movement of 
objects) or hydraulic (water droplets) quantities. If we stick to the digital realm, the essential 
nature of data at this level is that of tokens physically realized in an electrical charge, possibly 
manifested in an actually visible state of the system (e.g. by pixels on a display or a LED). At 
higher levels, the analysis of information in the context of Computer Science allows, and in 
fact requires, abstracting away from the physical expression of our inputs.

The structuring of physical data at the level of digital processing is given by a spatial and 
temporally determined execution, essential to their correct manipulation in terms of dependency 
relations. Typically, it will make a difference if the value of x is accessed at a memory slot 
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before accessing a y from which it depends, or if the location is accessed after the relevant 
value is updated, or at which memory location one looks for a given value. The resulting 
structure can be taken either as an ontological or an epistemic property. In the former case 
(as argued in Fresco and Wolf 2013), data composed by logical operations and accessed 
by memory functions is structured in view of the capacity of the abstract datum to be so 
before any implementation. Under the epistemic interpretation (as argued by Floridi 2011), 
structure is determined by the knowledge process at stake at this specific LoA, i.e. when bits 
are taken as information. This means that structure is not inherited from abstract data as 
such, but only obtained in virtue of the operational view on data. While the epistemic reading 
makes the distinction between information and data essential, the ontological view reduces 
the possibility of structure to data themselves.

In both cases, the explanation of how structure is obtained requires higher levels of 
abstraction. The epistemic account of data structure leads to the notion of low-level 
instructions that allow action-control. The ontological account will lead us through 
higher aspects of data representation and control, corresponding to different philosophical 
characterizations of the notion of information.

Operational information: controlling structured data

The philosophical analysis of low-level information requires explaining the process of data 
structuring. The ontological view on structure refers to essential properties of data and it 
requires expressing how their properties are actualized. The epistemic view on structure 
sees it as a necessary result of our knowing process and it immediately leads to a procedural 
account of actions. Both require explanation of how communication of data at the processor 
level is obtained. Technically, this is explained by low-level languages. Conceptually, it 
requires defining actions in terms of operations, so as to justify our knowledge-that in terms of 
knowledge-how.

A low-level language is a program that takes textual instructions and turns them into 
appropriate arithmetical and logical operations on numbers and bits, then correctly executed 
by the processor. Such a program is called an assembler. An assembly program is thus a series 
of operations on values to be performed on the physical locations known to the processor. Its 
syntax includes instructions such as jump, loop, load; values such as 0xff (255 in decimal) and 
actual register numbers, e.g. 16 or ports, e.g. DDRB (to control specific pins on an Arduino 
board). As an easy example, the programmer who expects the machine to sum together any 
two positive inputs from registers will work with few lines of code, e.g. in the format for 
16bit addition:

DATA SEGMENT
NUM DW 1234H, 0F234H
SUM DW 2 DUP(0)
DATA ENDS
CODE SEGMENT
ASSUME CS: CODE, DS:DATA
START: MOV AX,DATA
MOV DS,AX
MOV AX,NUM ; First number loaded into AX
MOV BX,0H ; For carry BX register is cleared
ADD AX,NUM+2 ; Second number added with AX
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JNC DOWN ; Check for carry
INC BX ; If carry generated increment the BX
DOWN: MOV SUM,AX ; Storing the sum value
MOV SUM+2,BX ; Storing the carry value
MOV AH,4CH
INT 21H
CODE ENDS
END START 

An assembly program has its own syntax and construction rules, which determine the 
correctness of the execution. It allows an agent to structure physical data, i.e. it permits 
control over the physical layer by defining what operation (at machine-code level) is to be 
performed in order to execute the required action (at digital data level): for example, it allows 
assigning a value to an address or directing an output to a port.3 We will say that machine code 
embeds a notion of operational information on structured, physical evaluated variables 
(Figure 10.2, see also Chapter 9).

Take a look at Figure 10.4, the essential element at this level is the use of a language 
to add structure to data. Such language is syntactically well-defined, hence structure is 
defined by correctness. Moreover, the language imports semantics as a way of denoting the 
physical entities that constitute the ontological domain of the relation language-objects. The 
semantics of data structuring, i.e. the range of available operations definable at machine-
code level, is fixed by the physical layer information operates on: code 0xFF can only mean 
the decimal translation of 255; DDRB can only be used if the underlying hardware has 
a port that deals with a given set of pins; jump will correctly work if the specified address 
exists, and so on. Change the physical elements and the semantics changes accordingly. Here 
the semantic relation is not intended in terms of compositional rules and instructions that 
can be freely designed and modified by the agent, but is fixed by the ontological domain. 
This specific syntactic-semantic structure qualifies operational information as well-formed 
performative data.

The switch from information as structured data to operational information as its control 
device establishes therefore a semantic relation which maps ontology (of physical entities 
and physical actions) to a language (of operations). The corresponding satisfiability relation 
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of operations by actions can be interpreted in terms of execution. The ontology and the 
epistemology of structuring assign different priorities to action and operation. If the relation 
of structuring performed by the language of machine code is intended as inherent to data 
(i.e. understood from an ontological viewpoint), it will not be provided by operations, but only 
described by them. This implies that abstract data (like a value jump to an address) enjoys a 
structuring property that exists independently of the contingent action actually performed 
(with a given value and at a given address). The action, in turn, is explained in terms of 
implementation of the abstract case, corresponding to a valid change generated by the action 
in the system. Hence, for the ontological view, structure is a priori and inherent to data. If, 
instead, one looks at the structure as the result of the operation obtained by execution of 
strings of machine-code language, the result is a posteriori in the domain of reference of the 
language and it is assigned by operations.

Instructional information: programs and their semantics

Syntactic correctness and a denotational relation of satisfiability are the elements 
implemented at the level of actions-structuring by machine-code language operations. When 
data is abstracted from the physical layer, i.e. the specifics of the material execution and the 
ontology denoted by machine code are forgotten, a new control device is required to account 
for the meaning of computation. This time, the ontology of operations is understood as 
the reference domain of instructions; the latter, in turn, constitute a control device which 
corresponds, in the practice of Computer Science, to establishing the interface between the 
user and the machine language by means of a programming language.

A high-level program denotes the executable strings of low-level information of machine 
code. Each family of such languages interprets differently their linguistic constructs and the 
related semantics, here simplified in the following main distinction:

•	 Declarative programming refers to languages describing what computations (i.e. the 
low-level operations) should be performed. Functional languages (like Haskell, LISP, 
or JavaScript, although with relevant differences) are members of this family, with 
functions semantically defined by their input-output types (signature);

•	 Imperative programming refers to languages where the program is construed around 
states and actions telling how to change such states. Object oriented languages (like 
C or Java) are members of this family, with objects used to define every element and 
making use of various concepts and operations to re-use them. 

A programming language offers a new control structure to be analyzed by properties of 
the program. While machine-code language provides a semantics for the execution (action), 
a programming language provides a semantics for the computation (operation). This is 
explained usually by referring to two main categories:

•	 operational semantics: it syntactically proves properties of the program in terms of rules 
from logical statements that formalize its states and procedures;

•	 denotational semantics: it compositionally expresses properties of the program in terms of 
formal statements that map to each syntactic object a mathematical one.

Each syntactic construct in a programming language expresses a functional executable 
procedure on the lower level of the machine language. This association of the high-level 
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to the low-level language is nowadays mostly executed automatically through the processes 
of compiling, followed by the process of linking for the creation of an executable file. As a 
language, this novel control structure requires (again) correctness of its syntactic nature: the 
compiler is charged with the task of discovering syntactically incorrect code. But while the 
semantics of machine code was defined by the physical level, this new language instantiates 
a novel semantic relation with a domain of abstract entities. Let us extend the example from 
the previous section. To automatically produce and control the machine code to structure 
together the input values of two registers, the programmer will write some program, e.g. in C:

int main() {

int a, b, c;

printf(“Enter two numbers to add\n”);

scanf(“%d%d”,&a,&b);

c = a + b;

printf(“Sum of entered numbers = %d\n”,c);

return 0;

} 

The C code above is syntactically well-formed, which guarantees control over operations 
at machine-code level (i.e. the code will compile correctly). Moreover, it expresses an 
instructional information of the form: “given positive integers a,b,c perform the operation 
a+b=c and print the result c.” The elements denoted are no longer the implementable names 
for physical locations and circuit-closing operations, but abstract objects and their properties, 
such as integer number and sum operation. We will refer to this new level of abstraction as 
instructional information (Figure 10.3).

The information content of the machine language (Figure 10.5) is now denoted by the 
language of the program in terms of instructions;4 and the latter is satisfied by operational 
information in machine code. The new control device is represented by syntactically correct 
strings of programming code matching appropriate executable strings of machine code; the 
meaning of the former strings being given in terms of a domain of interpretation for the 
data as abstract objects and their properties, the new ontology of the language at hand. 
This syntactic-semantic structure qualifies instructional information as well-formed, 
meaningful data. Meaning is acquired at this stage by evaluating whether an operation (and 
in turn an action) is obtained at the implementation level. There is still no alethic assessment: 
like in the case of an order to a person, it makes no sense to ask of a piece of code in itself 
whether it is true or false.

But the programmer does not only want to know whether the produced code will 
execute some operation in a given domain of objects, making something happen at machine-
code level. The latter evaluates instructional information in view of the implementation. 
Instructions need to be evaluated also with respect to their intended meaning, i.e. the abstract 
objects and the operations defined on them. These reflect the algorithm implemented by 
the current program: the programmer wants to know whether the code written will make 
happen what she is expecting. In the following section, we consider this further abstraction 
level, to evaluate computation and its informational content in view of purpose and design, 
and to explore how further epistemic and alethic conditions are involved.
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Abstract information: algorithm, design and purpose

The presence of a language at machine code and programming levels allows a mapping 
between symbols and meaning. When instructional information is not taken as an abstraction 
of the operational level, but as an implementation itself, the meaning of instructions is given 
by what they are supposed to make happen. This next level of interpretation for the notion of 
information within the computational paradigm is given by the purpose and design according 
to which a program implements (as efficiently and precisely as possible) an algorithm. This 
requires a further re-definition of information in view of its abstract content and epistemic 
value.

An algorithm is the abstract representation of a mathematical function required to fulfil 
a task. In our case, such task is represented by the expected machine behavior. Although it is 
debated how algorithms in Computer Science should be formally understood,5 an abstract 
definition is in terms of a Turing computable or general recursive function implemented by 
a program, say for example one from natural numbers to natural numbers such as the sum 
of two integers.6 A programmer who wants the machine to sum together any two positive 
inputs will write a program which implements a set of rules, for example as follows:

1	 Read the Values of A and B
2	 If A and B ≥ 0, SUM = A+B. Display SUM. Stop.
3	 Otherwise, Return ERROR: `No positive inputs’. Stop. 
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Besides the quantitative notion of algorithmic information,7 the informational content 
of an implemented algorithm can be defined by abstraction and expressed in terms of the 
designer’s intention to solve a formulated problem. For example, the designer might wish 
to know some physical quantity, for which she devises rules to perform a task, offering a 
corresponding solution, in our case the sum of two positive integers. The choice of which 
step to apply is crucial, because some solution will be correct to solve the problem at hand, 
others will not. It is in view of the designer’s intention that the algorithm is considered a 
correct mathematical representation of the intended task and, in turn, the written program is 
deemed correct or not. Conversely, the program has to implement correctly the instructions 
expressed by the algorithm. Correspondence by implementation here is a relation of 
adequacy, not of mirroring. Accordingly, the content of an algorithm can be defined as 
abstract, correctness-determining information (see Figure 10.4).

As the informational content of the algorithm determines the correctness of all the lower 
level implementations, its semantic value cannot be dependent from those implementations. 
It has to be evaluated in terms of the ontology of the algorithm and the epistemology of its 
design. The former refers to the abstract representation of a function, akin to a mathematical 
model. The relation between mathematical and computational abstraction is not trivial. The 
algorithm is the mathematical description of the program functional specification and as such it 
establishes correctness for the material artefact running the program. In this sense, it represents 
a normative definition of the computational instrument, see (Turner, 2011). In software 
engineering, the design of the specification of a system is a process that precedes the design 
of the algorithm that has to satisfy it. Such a process, performed with semi-formal or formal 
methods such as the Unified Modeling Language (Fowler 2003), State Transition Diagrams or 
flowcharts, is meant to offer a representation of the system as intended by the designer. The 
result is a representation that expresses the intended meaning of the system (“what is that the 
system should do?”, “which problem should it solve?”). The algorithm then expresses the 
required instructional setting (“how is the system supposed to work?”, “how should it solve the 
given problem?”) in an abstract way, independent from any language-specific syntax.

From the point of view of our analysis of information in Figure 10.6, the specification and 
the algorithm together offer a definition of the computational system and an image of the 
artefact that has to implement it. Besides, this pair has to match the intention of the designer. 
Here the epistemic reading completes the picture. Correctness becomes not only an analytic 
definitional property, in the sense of being the correct decomposition of concepts required to 
define a function (and eventually its execution). It has to be designed correctly to satisfy the 
required function for the problem at hand, a synthetic composition of problem and solution.

The correctly designed algorithm acts now as an information-hiding device with respect 
to both implementation (the instructional information level) and the working device 
(the operational information level). When defining the algorithm, details essential to the 
implementation and execution level are ignored, but their details can be reconstructed when 
required.8 The designed algorithm immediately determines the correct implementations in 
any given algorithm and then in any language. From the point of view of the properties of the 
information, each construction made according to the rules defined by the algorithm represents 
a true instance of the abstract model defined by the specification and the algorithm. At this stage, 
the abstract nature of the informational content of an algorithm also defines truthfulness of its 
instances, and not just their correctness. The defining property of the informational content at 
the level of the algorithm is that every lower layer can be defined as a true and correct instance only 
in view of this one. Hence, the (full) informational content of an algorithm can be defined as 
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abstract, correctness- and truth-determining information. To further qualify this claim 
we shall reconsider the full computational process in the next section.

The information flow of the computational process

The various notions of information from the literature in mathematics, epistemology and 
philosophy arise within the computational process. Each notion emerges naturally, defining 
the ontology and the epistemology of computation. The former is given in view of the relation 
of abstraction-implementation present at each level of the computational process, realizing syntax 
and semantics. The latter is instantiated in terms of the control structure that each abstraction 
level performs on the lower one(s).

Let us recall the abstraction-implementation relations. Structured physical data is the 
informational content where only quantitative on/off relations of bits are at stake. Electrical 
charges are the domain of reference of machine code, which represents its control structure. 
At this higher level, the only requirement is that assembly language is guaranteed syntactically 
well-formed by automatic compilation. This quantitative information has in itself no semantic, 
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nor alethic value. This abstraction level sees action-control performed by operations of machine 
code in terms of signaling and communication, a task notoriously fulfilled by the Mathematical 
Theory of Communication, or Shannon’s Information Theory (Shannon 1948), see Chapter 
4. Next, programs are abstractions from machine code. The syntax of any given correct string 
of instructions can be different, depending on the specifics of the language, but it will denote 
the same operation to be performed at machine-code level. For the corresponding control 
structure, strings of instructions in a programming language range over operations of machine 
code. But programs are also implementations of algorithms. Any instruction interprets a task 
and as such it is loaded with the meaning defined by the designer’s task. This requires that the 
correct syntactic string in the language expresses the appropriate instruction from the algorithm.

The implementation side of this relation is instantiated as follows:

bits – machine code – programming language – algorithm.

Its informational content is characterized by syntactic correctness (at the level of actions, 
instructions and operations) and a meaning relation (by interpretation of a task by instructions 
and their implementation by actions): a correct operation is evaluated in terms of the 
instructional information expressed in some programming language; and a correct language 
implementation is evaluated in terms of the abstract information expressed by the algorithm. 
Information is composed here by: physical data in the circuitry of the machine, taken as a 
relational entity that establishes ontological and epistemic difference; correctness as a property 
of controlled operations, which relate to the physical layer and can be interpreted independently 
from the actual operation of coding; finally, the proper meaning is given in the relation to 
instructions, evaluated in view of the task to be performed, fulfilling also a performative role.

This qualification of the information flow corresponds to well-structured meaningful data, 
which is usually given as the standard definition of information (SDI), see (Israel, Perry 1990), 
(Devlin 1991), (Floridi 2005, 2014), see also Chapter 6. This notion of meaningful data 
satisfies all cardinal principles of SDI:

•	 Typological Neutrality: information cannot be dataless, and everything can be a datum;
•	 Taxonomical Neutrality: a datum is a relational entity, so is information;
•	 Ontological Neutrality: data implementing information are physical;
•	 Genetical Neutrality: data (and therefore information) can have a semantics independently 

of any informer;
•	 Alethic Neutrality: meaningful and well-formed data qualify as information, no matter 

whether they represent or convey a truth or a falsehood or have no alethic value at all. 

It is thus clear that meaning and correctness are here the basic criteria of evaluation: is a given 
set of machine-code operations correct to perform some desired physical actions in a given 
physical environment? Does a given program express the correct instructions to obtain a 
certain output (functional correctness)? Finally, when the algorithm is taken operationally, is 
a given set of abstract rules the correct way to characterize the intention to obtain a result or 
resolve a problem?9 No truth or falsity is conveyed, as it makes no sense to predicate truth 
of a list of instructions, be those expressed in common natural language or in the syntax of a 
given programming language.

The corresponding abstract relation is instantiated by the informational flow between

output – program – algorithm – intention.

This abstraction requires considering the output, the program and the algorithm as 
mathematical entities, realizing a definition of the specification. At this stage, an analysis in 
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terms of correctness and meaning seems to remain unsatisfactory. As a mathematical model, 
the algorithm has instances that satisfy it, and some that do not, while each of those can be 
taken as correct on its own (when accounting for different tasks). This happens when the 
algorithm is interpreted as a recursive definition of a function in a specification (for example of 
the sum operation in terms of the successor function) defining the model of the task intended 
by the designer; such model will have (possibly many) abstract machine(s) as its instances and 
any implemented expression (for example in the C language, but also in natural language) 
of that algorithm will be a true realization of any such instance. This way of expressing the 
relation between abstract implementation, algorithm with its output and intention is akin to 
the definition of semantic satisfiability in a model, which does not define correctness, but truth. 
The informational content of such relation requires now for its definition reference to the 
semantic conception that encapsulates truth, see (Floridi 2011) and Chapter 6. The information 
flow of the full computational process is thus based on meaningfulness, correctness and truth 
at different stages. We recall all these stages again in Figure 10.5. This description emphasizes 
the duality inherent to computation as an abstract process that is instantiated in a mechanical 
artefact, an issue that has affected crucially the idea of program verification, see (Fetzer 1988).

Verifying information

The informational view of digital computation presented here can be matched against 
formal verification as the reconstruction of the correct mapping between the instructional 
information level of the executable program and the abstract information level of the 
algorithm and its intended design. The practice of verification is the process of testing, which 
includes also empirical verification. It consists in checking whether the execution of a given 
program is error-free, in the sense of returning the expected behavior as by definition of its 
design and by realization of its purpose. Software testing is the general process of checking 
that the requirements guided by the design are met and is divided into various tasks:

1	 check that the program responds to all valid inputs;
2	 check that the computation is performing with respect to time;
3	 check that the system is acceptable for a standard user;
4	 check that the system runs well on the intended environment (physical and virtual).

These tasks describe a modular enterprise: from the verification of the functionality of a 
single piece of code, e.g. implementing a function or an object (unit testing); through checking 
the interface of different units (integration testing); to checking validity of data passing among 
interfaces (component interface testing); up to the verification of the fully integrated system 
(system testing).

Compilation and linking processes are nowadays mostly automatically generated; 
hence, the verification of the operational information results in a combination of testing 
the functionality of the automatic compiler software that generates the machine code, and 
of the various techniques comprising hardware testing. For the former, one is considering 
another piece of software on its own, hence the following steps from unit testing onwards 
apply. For the latter, it mainly consists of so called stress testing, to establish the limit of 
system’s stability and performance, focusing on the physical execution. Unit testing is the 
basic verification of the correctness of instructional information (i.e. at program’s level). It is 
in the first place an evaluation of the purely syntactic structure of the instruction and, in turn, 
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Figure 10.7  Syntax, semantics and control

of its execution as operation. The syntactic correctness check is required to establish whether 
the chosen procedures are implemented correctly according to basic syntactic rules of the 
language, e.g. by ensuring that C expressions terminate with a semi-colon, that opening 
brackets always have matching closing ones, and that operating on positive integers has the 
starting input defined using a failure on the (n<=0) expression. To check the meaningfully 
loaded instructional information, one requires not only to know whether a specific function 
(or object) is correctly coded; one also requires to know whether the function (or object) is 
what it is needed in order to express the instruction for the desired operation. Integration 
testing can be seen as the checking of meaningful composition of elements of an analytic 
definition, and as such it is meant to verify truthfulness. For example, given the intended 
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operation is the one of sum on integers, it requires using the appropriate input/output 
signature int->int (i.e. that the function takes integers as inputs and returns an integer as 
output) and the use of the sum = a + b function. For this purpose, a composition that uses 
an input/output signature real->int (i.e. from real numbers as input to integers as output) 
using the function a * b (i.e. by multiplication) would not satisfy the analytic definition of 
sum of integers. While correct in view of another algorithm, this implementation would not 
be a true instance of the model defined by the intended one. Component interface testing 
is then a similar analyticity test in the composition of different functions for the purposes of 
defining a more complex algorithm. Finally, testing the integrated system has to reflect the 
physical execution and its effectiveness at the implementation level, the correctness of the 
instruction and of the rules that define them at the abstraction level.

From the informational viewpoint, verification corresponds therefore to checking 
meaningfulness, correctness and truth at both the implementation level (bits – machine code – 
programming language – algorithm) and the abstraction level (output – program – algorithm – intention). 
The implementation level requires checking that physical execution restores downwards the 
valid reference domain for the program, going from instructions to operations to actions. The 
abstraction level moves upwards from the physical (operational) and syntactical (instructional) 
formulation of the computation to reconstruct the semantic information content at the level 
of algorithm, intention and purpose. This means also verifying that the defined computation 
can be subsumed as a true instance of the (intended) definition of the system.

Computing as science of information

Our view on information in the computational process touches on Computer Science and 
its philosophy, including aspects related to Computer Engineering, Information Systems, 
Information Technology and Software Engineering.10 For this larger understanding of the 
discipline, the term Computing seems preferable. In this context, the view that Computing 
can be understood as a Science of Information is not new. Since the late 1960s, practitioners 
and philosophers have presented views based on a notion of information.11 It is striking, 
though, that these views focus over largely distinct aspects of computing, fitting different 
notions of information to their tasks. In some cases, information refers to data processing; in 
other cases, physical, methodological or working principles on data structures are intended.12 
Our analysis has highlighted the need for conceptual precision in identifying what 
information means at each level of abstraction, hence for each of the different sub-disciplines 
in Computing. We examined information structures in view of a syntax-semantic relation 
between a domain of objects and a language at various LoAs. Object domains, in terms of 
implementations, represent the ontologies of Computing (from bits to algorithmic constructs, 
but also including their physical implementations, such as networks). Languages constitute 
control means (from machine-code strings, through representations such as FSMs, to 
designers’ intentional states), expressing the know-how over ontologies; in this sense, they 
can be subsumed under the general heading of epistemology. Such a conceptual distinction is 
often blurred in practice, where a design task can be updated many times in view of insights 
coming directly from prototyping. A philosophical formulation of (digital) Computing can 
be presented then in terms of information as follows:13

Computing is the systematic study of the ontologies and epistemology of 
information structures.
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It is essential that the qualification of systematic study appealed by in this definition be understood 
in a broad methodological sense: it refers to designs, formal models, blueprints, testing, up to 
include those fragments of the discipline that deal with evaluation, behavioral and experimental 
methods, including e.g. Human-Computer Interaction and Computational Simulations.

Concluding remarks

The standard digital computational process includes all the various aspects of the notion 
of information: the quantitative definition of bits, the syntactic construction of operations, 
the meaning of instructions, the abstract format of algorithm and the epistemically loaded 
designer’s intention. We have analyzed both its ontology through the syntax-semantics 
divide, and its epistemology, in terms of control structures. The information flow that results 
from them is based on the relation abstraction-implementation. At each level, important 
philosophical issues arise, in particular related to correctness, meaning and truth. The 
relational notion of correctness is clearly a common trait to evaluate information throughout 
the whole computational process. Meaning is a distinctive step to move from mechanical 
operations to their instructional counterparts. Truthfulness arises at the highest level of 
abstraction, when algorithms are accounted as mathematical structures defining models. 
Each such description defines a different, essential format of the notion of information within 
the philosophy of computer science and in turn offers a better definition of Computing as a 
Science of Information.
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Notes
	 1	 This list is essentially incomplete. A more systematic presentation is available through the 

Association for Computing Machinery Classification System, see www.acm.org/about/class/
ccs98-html.

	 2	 Under the general heading of rule and dependency, we subsume the whole fetch-decode-execute-
check cycle of the program instructions performed by the CPU.

	 3	 Under the general heading of operation, we subsume the whole set of arithmetical operations 
performed e.g. on the stack memory structure or on their simulation by CPU machine registers.

	 4	 Under the general heading of instruction, we subsume the basic list of structures sufficient to 
program any algorithm in any language: assignment, sequencing, branching and iteration.

	 5	 The two most known and alternative views see algorithms respectively as abstract machines or as 
recursive definitions, see e.g. (Moschovakis 2001), (Blass, Gurevich 2003).

	 6	 For an easy introduction to the notion of Turing Machine and the computable functions in 
relation to information, see (The Pi Network 2013), Chapter 12.

	 7	 For Algorithmic Information Theory see Chapter 5.
	 8	 For different views on this debate, see e.g. (Colburn, Shute 2007), (Turner 2011).
	 9	 The algorithm characterizes the intention of the designer, in the same way as a characteristic 

function is a way of defining precisely a set by saying for any possible object whether it is a 
member of that set or not.

	10	 See e.g. https://www.acm.org/education/curricula-recommendations for the ACM Curricula 
Recommendations related to each sub-field.

	11	 A good selection of brief articles introducing different positions is available in (Denning 2010).
	12	 For an overview of interpretations on the nature of Computing as a discipline, see (Tedre 2014).
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	13	 The present definition of Computing as a discipline dealing with information structures at 
ontological and epistemological levels is justified in the present chapter only in view of the 
digital computational model. It could be argued that paradigms such as bio-computing and 
analogue computing deal with a similar conceptual structuring of information in some format 
(e.g. referring to chemicals and water droplets as computational objects hiding more basic 
informational quantities). A further argument to restrict the present analysis to digital computing 
only is historical: certain older models of computing would struggle inside this definition, and 
so might be for future computational models. A more extensive analysis addressing these issues 
is outside the scope of the present contribution. 

Further reading

For an overview of the topics and debates within the philosophy of Computer Science, see 
(Rapaport 2005) and (Turner, 2014). For an advanced introduction to assembly for some 
common types of processors, see e.g. (Dandamudi 2005). For a more extensive analysis of 
the semantics of programs, see Turner (2007) and White (2008). For an analysis of errors 
in information systems, see (Primiero 2014); for one specifically devoted to computational 
systems, see (Fresco, Primiero 2013). (The Pi Network, 2013) offers an overview of the 
philosophical issues related to information and Chapter 12 is specifically devoted to 
information and computation. For an overview of the information-hiding process by 
abstraction in terms of information, see (Primiero, 2009). (Angius 2013) analyzes software 
verification in relation to the philosophical categories of abstraction and idealization.
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