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Turing, Ashby and “the Action of the Brain”: Form and Function in 

Modelling the Mechanisms of Cognition 

 

Hajo Greif 

 

Not very much has been written to date on the relation between Alan M. Turing and W. Ross 

Ashby, besides citing and briefly discussing a letter from Turing to Ashby, in which Turing 

suggested using an early digital computer for “producing models of the action of the brain” 

(Turing 1946). Given the personal acquaintance between Turing and Ashby, and given the 

partial proximity of their research fields, an additional historical insight into the interactions 

between their views should be possible and worthwhile (for previous inquiries compare, for 

example, Asaro 2011; Dewhurst 2018). We suggest that a comparative view of Turing’s and 

Ashby’s work will also help to address a systematic question in the inquiries into human 

cognition: What is the relation between “producing models of the action of the brain” and the 

formal, symbol-based characteristics of the “instructions” on which possible computational 

models are based? 

Reconstructing some of the most remarkable commonalities and differences between 

Turing’s and Ashby’s work, this inquiry will provide a perspective towards resolving the 

seemingly strict dichotomy between the formal-symbolic nature of modelling in Artificial 

Intelligence (AI) and the principle of embodiment contended by AI critics and proponents of 

“Nouvelle AI”. 

Both Turing and Ashby believed that “the action of the human brain” can be subject to 

a method of modelling that casts action in a strict mathematical description and breaks it down 

into simple routines that can be implemented in some kind of machine. However, they differed 

in terms of how and to what purpose that mechanical modelling is accomplished: First, the 

criterion of the model being “mechanical” was understood differently. The primary though not 

the exclusive focus was on formal versus material modelling respectively, which can be 

detected in their diverging interpretations of the role of mathematical methods in modelling. 

Second, Turing’s and Ashby’s interpretations of the models’ target systems diverged: Ashby 

was concerned with adaptive behaviours of brains and other systems, their functions and their 

relationships to their environments (Ashby 1960). In doing so, he explicitly operated under a 

Darwinian paradigm. Turing’s approach in (1952), in turn, built on the non-Darwinian account 

of morphogenesis developed by Sir D’Arcy Thompson (1942). His take on morphogenesis, 

along with his proto-connectionist ideas, were primarily concerned with the amenability of a 

variety of phenomena to computational modelling. 

Either way, however, the primary target of modelling the “action of the brain” 

envisioned by the two authors might not refer to higher-order cognitive functions and symbolic 
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representation, but to basic forms of cognitive organisation and adaptive functions of the brain 

as a biological organ, respectively. Hence, for entirely distinct reasons, Turing and Ashby 

appeared similarly indifferent to what counts as the key characteristic of human thought in the 

cognitive sciences and classical AI. By reference to contemporary approaches to cognition as 

being embodied and environmentally situated, it can be shown how this seeming indifference 

might prove instructive. Neither is there a need to draw a “fairly sharp line between the physical 

and the intellectual capacities of a man”, as Turing believed, nor does a selectionist argument 

foreclose a finely grained and biologically defensible view of the action of the brain as a 

necessarily embodied, but not necessarily representational phenomenon. 
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Non-Turing models of computation as a hypothetical basis for 

modeling some mental activities 

 

Paweł Stacewicz 

 

1.  I call a non-Turing model of computation (NTMC) any model that is not extensionally 

equivalent to the Universal Turing Machine model (Turing 1936). Each model of this kind 

allows  to solve a broader class of problems than the Turing model (it is extensionally broader 

(Copeland 2002), (Ord 2006)). 

 

2. The informatic motivation to extend the Turing model stems from the fact that in this model 

there are uncomputable problems, such as the halting problem or the problem of diophantic 

equations (Harel 1987). The unsolvability of such problems requires, first, an understanding 

(why they are not solvable) and, second, an indication of real or hypothetical methods of 

overcoming them (how they can be reformulated and/or solved). 

 

3. One of the strategies for defining NTMC models, also called models of hypercomputation, 

consists in modifying at least one of the distinguishing features of the Turing model: a) 

discreteness (digitality), b) finiteness (finite number of operations performed in finite time), 

and c) determinism (a strictly defined data processing scheme). 

Modification of one of the above mentioned features leads to the following models:  a') 

analogue-continuous,  b') infinitistic,  c') non-deterministic models, respectively. Modification 

of more features leads to mixed models (Shannon 1941), (Shagrir 2004), (Ord 2006), (Burgin, 

Dodig-Crnkovic 2013).  

 

4. In the field of computational models of mental activities (such as perception, reasoning or 

learning), the dominant systems are those compliant with the Turing model of computation, 

i.e. systems which, at the elementary level of mathematical description, are equivalent to a 

certain Turing machine (in practice: machine with a finite tape). These include both symbolic 

(e.g. rule-based systems) and connectionist systems (e.g. perceptron-type neural networks). All 

of them are implemented using programs for digital computers (sometimes controlling certain 

physical systems, e.g. robots). (Marciszewski, Stacewicz 2010). 

 

5. NTMC models can provide theoretical basis for non-Turing models of mental activities – at 

least theoretical/formal ones.   

Such models seem interesting because of: a) the possible analogicity of the brain (i.e. the 

biological basis of the mind), b) the creativity of the mind (which may require indeterminism 
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at the brain level), c) the ability of the mind to effectively use infinite objects (especially in 

mathematics). 
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What differences can the body make?  

Remarks on morphological computation 
 

Przemysław Nowakowski 
 

According to Shapiro (2004), different body types determine different minds or different 

cognitive abilities. Wilson and Foglia (2011) expand this account and propose that bodies 

constrain, distribute, and regulate cognitive processing, therefore we can assume that different 

bodies should do this job in different ways. Here, I assume that if the computational approach 

to cognition is correct, and if the body really makes a difference, different bodies should 

determine differences in performing the computations underlying cognition. However, what 

differences can the body make? 

 

Based on the contemporary literature (Caluwaerts et al. 2013; Ghazi-Zahedi et al. 2017;  

Miłkowski 2018; Müller, Hoffmann 2017; Nowakowski 2017; Seoane 2018), I will describe 

and assess the following options: 

a. the body as extending resources for computation and storage; 

b. the body as increasing robustness of performing the computations; 

c. the body as simplifying the computations; 

d. the body as changing the computations. 

 

I will conclude my talk by objecting to approaches to morphological computation as a non-

computation (Hewitson et al. 2018; Miłkowski 2018). 
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Conceptual structure of natural numbers  

Modeling number cognition in conceptual spaces  
 

Paula Quinon 
 

People use natural numbers in different ways and for different purposes: for stating how many 

items there are in some collection or for rounding up a quantity, for enumerating elements from 

a collection, for computing (adding, multiplying, etc.), and for encoding (as an IT-routine or as 

a secret code). In most societies all these uses are handled by a single system of symbolic 

representations (e.g. the Arabic numerals). This multitude of meanings of the numerical 

expressions is responsible for the complexity of the process of acquiring the number concept: 

a child needs to acquire conceptual elements from many contexts and somehow put them all 

together in order to understand what numerical expressions mean and how one can use them. 

This is particularly difficult in our contemporary culture. As suggested by the archaeology of 

numerical systems (e.g. various notations in Maya’s language) or testified by different 

numerical expression still used in certain spoken languages, the complexity of meaning 

encoded by a single digit or by a progression of numerals have increased.  

We know today that this complexity of meaning has its roots in a multitude of cognitive 

factors amounting to the acquisition of number concept (Spelke 2000; Feigenson et al. 2004; 

Kinzler & Spelke 2007). For instance, humans, including infants, and also animals, have an 

ability to approximate quantities without counting (Dehaene 1997/2011). In addition to 

cognitive factors, symbolic representations of a given culture play a key role (Carey 2009). 

And the ability to recite number words without being able to count elements of a collection is 

different from the ability to choose instinctively a bag containing more candy. Number 

acquisition consists in correlating these different aspects into one unifying structure, the natural 

numbers.  

The research of developmental psychologists shows that the conceptual content of 

numerical expressions increases gradually in children (Gelman & Galistel 1978; Sarnecka 

2015). For instance, children learn the first names of numbers: “one”, “two”, “three” and “four” 

thanks to the ability to subitize, i.e., visually determine the exact quantity of objects without 

counting – in order of magnitude and one-by-one. For example, a two-knower – usually a 2-

year-old – knows what “one” and “two” mean, but associates random quantities to “three”, 

“four”, “five” etc.). It is also known that number concept development is not continuous. It is 

suggested that there is an “aha” moment when children (about 3.5yo) grasp a so-called 

“cardinality principle”, which enables them to simultaneously understand meanings of bigger 

number names: “five”, “six” etc. These – so called “cardinality-principle-knowers” – suddenly 

understand that the magnitude of a collection is expressed by the last name from the counting 

list they used to assess the cardinality of the collection. All these capacities – approximation, 
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subitizing, counting list and cardinality principle - together amount to children’s understanding 

of the number concept.  

It is a theoretical challenge to understand how these different cognitive (approximation 

or subitizing) and cultural (counting list) factors combine and enable the number concept to be 

constructed in the mind of a child. In addition to its substantial scientific interest, a model of 

the process has important practical significance. An understanding of the process would make 

it possible to develop new pedagogical methods for helping children to understand the structure 

and use of natural numbers.  

Most efforts to model the structure and development of number concepts have been based 

on computational models of the approximation process executed by Approximate Number 

System (ANS). These models aim at capturing the mathematical aspect of representations, how 

these representations differ depending on the magnitude of the input, depending on the type 

(progression or cardinality) of the input, modality of input, etc. They are oriented to disclose 

the algorithmic process in the background of human ability to approximate. For review see 

(Zorzi et al. 2005). In my talk, I will present an example of a connectionist model based on 

artificial neural networks formulated by Dehaene and Chagneux (1993).  

I will then compare the computational models with models based on conceptual spaces. 

Conceptual spaces are a framework presented by Gärdenfors (2000, 2014). The main 

assumption of the theory of conceptual spaces states that meanings of words can be represented 

as a net of topological structures. At this point little is known about conceptual spaces for 

numbers, quantifiers and other concepts related to the different stages of number cognition. 

And hence, using conceptual spaces to model early number cognition, provides me with a 

particularly handy tool for making fine-grained conceptual distinctions. It is suited for 

modeling both symbolic and non-symbolic representations of knowledge and information.  

Quinon and Gemel (2015; 2019) proposed a simplified conceptual space of pre-verbal 

ANS representations based on the idea that ANS-quantifiers are vague concepts. We used the 

conceptual spaces model of vagueness proposed by (Douven et al. 2013). The model we 

proposed ignores multiple general aspects of the behavior of ANS-related representations. We 

focused on representations that are activated in response to a constant visual input consisting 

of various sets composed of different quantities of blue dots distributed on a whiteboard. 

Formulating a model for a simple sensory input is a necessary step towards more 

comprehensive models accounting for other types of sensory inputs and also for symbolic 

input.  

Moreover, conceptual spaces (Gärdenfors 2000; 2014) have been used to model the 

process of conceptual change in scientific theories (Gärdenfors & Zenker 2011; 2013; Zenker 

& Gärdenfors 2015). Following the analogy that children’s thinking is similar to that of 

scientists (Gopnik 1996) and (Carey 1985), the next steps in the project will be using 

conceptual spaces for modeling the conceptual content that emerges at various stages of the 
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number concept development (including subitizing and cardinality principle). We also want to 

use the models to show how these stages are related and how a child can possibly go from one 

stage to another (and what are the obstacles for such a transition).  

Models of the conceptual structures of early number-theoretical (what are natural 

numbers?) and arithmetical knowledge (how to operate with them?) help us understanding how 

children construct numerical concepts and how it differs from the conceptual structure of the 

concept of natural numbers used by adults.  
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Modeling ethical phronetic knowledge bases in A-Robots 

Paweł Polak, Roman Krzanowski 

 

The goal of social robotics design is to build robots that will interact with humans in a safe and 

ethical way. Such robots, or Artificial Moral Agents (AMA), would be expected to exhibit 

ethical capacities similar to that of humans. However, the conceptual and practical problems 

of building such agents have not yet been resolved. This paper proposes a new approach for 

developing ethical capacities in robots based on the concept of Aristotelian phronesis. 

We outline one possible approach to the design of a phronetic robot. The proposed design 

uses a simplification of the original concept of phronesis (i.e., we implement a weak phronetic 

system), but it retains its characteristic features. In the proposed system, the ascent to the 

decision should be made through evaluating the existing use cases (UC) and comparing them 

to the specific situation, with the decision being made by selecting the most “ethically 

proximal” UC with the best outcome. The exact meaning of what the “ethically proximal case” 

is, needs a strict definition that can be operationalized. For instance, it is not clear What makes 

two or more UCs ethically similar or what makes a UC relevant to the situation.. The past UCs 

are not literal retentions of the past decisions, but rather abstracted situations. What is 

abstracted is not the material particularity of a situation but its ethical import. As vague as this 

statement is, it bars us from making decisions based on a simple “match” of the physical 

variables that describe the past cases. 

We first need few definitions for the terms “agent”, “decision process”, “ethical fact”, 

and “ethical knowledge base”. An agent  obtains a set of observations O1i, O2i, …, Oni about 

its environment (the state of the world). The index i denotes the specific set of observations 

(about the state-of-the-world); it may be the time index. An agent initiates the action ai, 

resulting in an outcome qi with a score si. We therefore have p(O1i,O2i,…Oni )Þ ai and ai(qi) Þsi. 

F is a fact about a given situation (the state of the world in a given instance). This information 

is gathered by the agent from its environment. O1i are specific instances of information. The 

collection of O1i constitutes the fact (i.e., Fi=(O1i,O2i,…Oni)). The use case (UC) comprises the 

state of the world, the action, the outcome, and the score, such that UC= p(O1i,O2i,…Oni )Þ ai 

and ai(qi) Þsi. The Ethical Knowledge Base (EKB) is the set of UCs, such that EKB = [UC1,…, 

UCn]. 

The decision pathway for the autonomous moral agent (AMA) is depicted below. 
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Figure 1 The decision pathway for an autonomous moral agent (AMA) 

 

An Artificial Moral Agent (AMA) obtains information about the environment through 

its sensory systems (1), AMA processes this information into the proper format, and stores it 

in its database F of FACTS [Fi=(O1i, O2i, …, Oni)] (2). The facts describe an agent’s situation. 

When making a decision, the agent’s inference engine (IE) takes facts that are relevant to the 

situation (3). The IE then searches the gent’s EKB for UCs that are similar according to the 

specific proximity measure (4) and selects the decision that offers the most favorable outcome 

(5). The decision is passed back to the agent (6), which then acts in the environment (7). 

The UC EKB contains the state of the world, actions, outcomes, and ethical scores. The 

results of actions are collected and feedback to the agent for integration in the UC EKB, as 

represented in Figure 1 by the dotted arrow. The presented schema of the functional blocks and 

decision pathways in the AMA with phronetic capacities is a high-level view that does not 

address the operational architecture of the system. 

In the presentation we ask the following questions: what does constitute an ethical fact 

“FACTS [Fi=(O1i, O2i, …, Oni)]” and how it can be formalized for the implementation in a 

digital system? How can the decision process be formalized “UC= p(O1i,O2i,…Oni )Þ ai and 

ai(qi) Þsi.” and what are its components and what is the format of EKB = [UC1, …, UCn]? 

Several other issues with the implementations of AMA are mentioned, such as ethical 

proximity measures and ethical search strategies, aggregation of UCs in EKB.  
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Computational psychopathology.  

How computational modelling can contribute to the understanding 

of mental disorders? 

 

Marcin Rządeczka 

 

Undoubtedly, mental disorders can be counted amongst the most complex objects of scientific 

inquiry, which is not only a result of their multi-level casual hierarchy, mostly consisting of 

several to dozens of intrinsic and extrinsic factors, but also some very intricate criteria of 

diagnosis. It is nearly impossible to apply typological thinking to them, due to the fact that they 

form wide spectra of manifestations defeating any attempt to classify them as a discrete entity 

with a well-defined set of constituent symptoms. For the above-mentioned reasons, until 

recently, the science of psychopathology lacked any serious candidate for a unifying theoretical 

framework able to offer, at least, some draft explanation of the mental disorders’ ultimate 

causes. 

 Indubitably, understanding mental disorders in terms of their proximate (i.e. 

mechanistic, neurobiological) causes is of great importance for both science and practice of 

medicine but offers no valuable answer to questions regarding the emergence of a certain 

disorder in a population.  To answer such a question, one must delve deeply into the 

evolutionary biology and reframe the research perspective. Unsurprisingly, both populational 

and phylogenetical approaches shed new light on the origin of mental disorders, describing 

them as unavoidable failures of complex systems. 

 The fruitful union of computational biology and psychopathology aims to use 

computational modelling for the sake of creating the unified large-scale picture of mental 

disorders. According to so-called null-hypothesis, any sufficiently complex process influenced 

by, at least, several genetic and environmental factors, each of which in a highly variable 

manner, will be manifested as a broad spectrum of phenotypes, described roughly by the bell-

shaped curve. In other words, this model predicts that abnormal cognition and behavior occurs 

in any population of organisms by default, and needs no special explanation at all. Low-

frequency abnormalities (around 1%-3%) are the natural result of high variability of a 

functional phenotype. Bipolar disorder, schizophrenia and autism, all fall into this category. 

 Other interesting model includes viewing mental disorders as the by-product of the 

bodily behavioral defense system. Computational models of the human immune system 

provide some promising preliminary results about the possible costs and benefits of 

supplementing the innate and adaptive immunity with a set of non-specific avoidance 

mechanisms based on the smoke-detector principle. It can be applied to better understand 

specific phobias and OCD (Obsessive-Compulsive Disorder), to name just a few examples. 



International Workshop on Computational Modelling  

Warsaw University of Technology, May 14, 2019 

 

 

14 

 

 Some mental disorders can also be modelled as diseases of homeostasis and mismatch, 

resulting from the dysregulation of set points, which were primarily adjusted by natural 

selection to match the ancestral environment, where daily tribulations were radically different 

from the challenges of modern life. Interesting examples being depression and some eating 

disorders. 
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