
Paweł Stacewicz 

Paula Quinon 

Warsaw University of Technology 

Faculty of Administration and Social Sciences 

International Center for Formal Ontology 

 

 

Analogicity in Computer Science.  

Some Methodological and Philosophical Issues. 

 

 

This text, enriched with some new elements by Paula Quinon, is an extract from two articles 

by Paweł Stacewicz: 1) "On different meanings of analogicity in computer science" (already 

published in Polish, in the journal "Semina Scientiarium")
1
, 2) "Analogicity in Computer 

Science. A Methodological Analysis" (submitted and currently reviewed in the journal 

"Studies in Logic, Grammar and Rhetoric").  

Therefore it is not a fully original work. 

Nevertheless, we decided to submit it for discussion as part of the workshop 

"Computational Modeling II" (organized in Cracow, on 11.03.2019, at the UPJPII 

University), because we are now working on a new publication devoted to analog/continuous 

computations, and all additional critical input, and each additional discussion will be for us 

very precious. 

Thus, we will be grateful for any comments that may contribute both: the improvement 

of the text no. 2 (which still is in the reviewing process), and the development of our new 

ideas.  

1. Analogicity in computer science  

1.1.  Two basic (general) meanings of analogicity  

 

Regardless of the (technical) aspect that is considered in contemporary computer science there 

exist two different (yet not necessarily separate) ways of understanding analogicity.  

                                                      
1
 Cf. Stacewicz P., „O różnych sposobach rozumienia analogowości w informatyce”,  Semina Scientiarum, nr 16, 

2017, ss. 121-137. 



The first meaning, we shall call it AN-A, refers to the concept of analogy. It 

acknowledges that analog computations are based on natural analogies and consist in the 

realisation of natural processes which, in the light of defined natural theory (for example 

physical or biological), correspond to some mathematical operations.
2
 Metaphorically 

speaking, if we want to perform a mathematical operation with the use of a computational 

system, we should find in nature its natural analogon. It is assument that such an analogon 

simply exists in nature and provides the high effectiveness of computations. The initial 

examples of AN-A techniques (that will be developed later) are: the calculation of quotient 

using the Ohm’s law (an illustrative example) or the integration of functions using physical 

integrators (a realistic example).  

The second meaning, we shall call it AN-C, refers to the concept of continuity. Its 

essence is the generalisation (broadening) of digital methods in order to make not only 

discrete (especially binary) but also continuous data processing possible.
3
 On a mathematical 

level, these data correspond to real numbers from a certain continuum (for example, an 

interval of a form [0,1]), yet on a physical level – certain continuous measurable variables (for 

example, voltage or electric potentials).
4
 

In a short comment to this distinction, we would like to add that the meaning of AN-A 

has, on the one hand, a historical character because the techniques, called analog, which 

consisted in the use of specific physical processes to specific computations, were applied 

mainly until the 1960s. On the other hand, it looks ahead to the future – towards computations 

of a new type that are more and more often called natural (for example, quantum or 

computations that use DNA
5
). The meaning of AN-C, by contrast, is more related to 

mathematical theories of data processing (the theoretical aspect of computations) than to their 

physical realisations. Perhaps, it is solely a theoretical meaning that, in practice, is reduced to 

discreteness/digitality (wedevelop this subject in section 2.2) due to physical features of data 

carriers.  

                                                      
2
 Cf. G. Ifrah, Historia powszechna cyfr [Universal history of numbers], vol. 2, Warsaw 2006, p. 655 [English 

edition: G. Ifrah, Universal History of Numbers: From Prehistory to the Invention of the Computer, translated by 

D. Bellos, E.F. Harding, S. Wood and I. Monk, London 1998]. 
3
 Sometimes, especially in some informal contexts, discrete vs continuous (the mathematical aspect) and digital 

vs analog (the computer science’s aspect) distinctions are treated as oppositions. From a formal point of view, 

however, we cannot talk about opposition, but complement or extension. A continuous domain includes a 

discrete domain as its subset, thus a discrete domain can be extended to a continuous domain. For example, a 

closed interval of a form [0,1] includes a set {0,1}, thus this set {0,1} can be extended to the interval [0,1].  
4
 Cf. J. Mycka, M. Piekarz, Przegląd zagadnień obliczalności analogowej [A review of the issues of analog 

computability], in Algorytmy, metody i programy naukowe [Algorithms, methods and scientific programmes], 

eds. S. Grzegórski, M. Miłosz, P. Muryjas, Lublin 2004, pp. 125–132. 
5
 Cf. L. Kari, G. Rozenberg, “The many facets of natural computing,” Communications of the ACM 51 (10) 

(2008): 72–83. 



Additionally, it is important to note that analogousness does not exclude continuity. 

This means that both continuous and discrete signals can be processed as analogons. 

Therefore, the above-differentiated meanings are not completely opposed. 

 

1.2. Analogicity in relation to analogousness  

 

The essence of AN-A analog techniques can be called analogousness – that is the necessity to 

use some natural analoga/equivalents of the performed mathematical operations for 

computing purposes. Such computations are of definitely more empirical character than 

digital techniques which refer to extremely simple states/phenomena.
6
 Their specificity can be 

presented by the following points: a) find in nature a distinct process that “calculate 

something” (and is described by a certain mathematical formula), b) build a computational 

system that uses such a process, c) initiate computations configuring the system, d) take 

measurements in the system and interpret the outcome as the results of computations.
7
 

It should be underlined that computations arranged in such a way are always justified by 

a special physical theory, which combines performed mathematical operations with 

phenomena used for their performance. Based on such a theory, it could be acknowledged that 

a given phenomenon has such and such mathematical description; and on the contrary: that 

operations constituting such a description can be performed physically within the 

phenomenon (or more accurately: the results of these operations can be identified with the 

results of suitable measurements). This can be explained in more details by the following 

illustrative (not realistic) example.  

 

Example 1. Let’s consider the calculation of quotient using the Ohm’s law (I=V/R). This law 

describes the flow of current in an electrical circuit (it must be added that this is an idealised 

circuit and its description does not take into considerations such factors as, for example, the 

self-inductance
8
).  

An analog computation is performed in the following way: a) adjust the voltage V and 

the resistance R appropriately, b) initiate the flow of current, c) take a measurement of current 

intensity I, interpreting the result as the value of the quotient.  

                                                      
6
 Obviously, in the case of digital computations two opposite states, such as voltage and the lack of voltage, are 

sufficient.  
7
 Cf. G. Ifrah, Historia powszechna cyfr, p. 656. 

8
 Cf. W. Krajewski, Prawa nauki. Przegląd zagadnień metodologicznych i filozoficznych [Laws of science. A 

review of methodological and philosophical topics], Warsaw 1998, p. 109. 



A physical analogon of the computation is the flow of current in a circuit, which is 

initiated, controlled and observed with some intention, whereas the theory justifying the 

computation is the theory of current flow in a conductor (the idealising Ohm’s law constitutes 

its element). 

It should be provisionally noted (we will come back to this issue at the end of the text) 

that the validity and accuracy of AN-Aa analog computations must depend on the level of 

adequacy of the theory which describes the process that is the basis for computations (in this 

case: the flow of current through a conductor). If the theoretical mathematical formula (I=V/R) 

characterises the above-mentioned process good enough (it should be remembered that such 

formulas refer to idealised situations), the computation can be acknowledged as accurate 

enough. 

 

The most important characteristic of computations represented by the above example – a 

characteristic which accounts for the name “analog computations” – is analogousness. Such a 

quality is manifested on two levels.  

Firstly, as it is clearly presented by the above example, the process which performs a 

computation is a physical analogon of a certain mathematical operation. On this level, 

therefore, we encounter correspondence [a formal operation – a physical phenomenon]. (In 

the example, this occurred between the calculation of quotient and the flow of current.)  

Secondly, the basic process that is used to perform a computation can be applied to 

issues related to similar physical processes. Such a possibility is provided by the analogy 

between these two processes: they are analogic because an identical formal model describes 

them together. To explain this, we should take into consideration an integrating physical 

system (an integrator) that is based on a physical process A. Due to the fact that this process is 

formally described by a theory of integration (for example, the Riemann’s one), it can be used 

in computations that concern a broad category of other processes (B, C, D…) described by 

this or that integral.
9
 

Finally, one more issue leads directly to the second meaning of analogicity. Continuity 

is very often perceived as a crucial feature of AN-A analog computations. This is underlined 

because early (and specialised) analog systems were used, above all, to solve analytical 

problems (concerning, for example, differential equations) that are defined and described with 

the use of continuous real numbers and mathematical structures (such as differentiable 

                                                      
9
 See G. M. Fichtenholz, Rachunek różniczkowy i całkowy [Differential and Integral Calculus], vol. 2, Warsaw 

1997. 



functions) “constructed” upon them.
10

 Moreover, processes that performed computations 

inside the discussed systems were characterised mathematically with continuous (analytical) 

objects.
11

 Despite this, as explained earlier, the essence of AN-A analog techniques does not 

come down to their continuity. 

 

1.3.  Analogicity in relation to continuity  

 

The above-mentioned concept of continuity constitutes a basis for determining the second 

meaning of analogicity, that is AN-C. From the point of view of modern computer science, 

this meaning should be recognised as dominant, which is manifested by a common tendency 

for identifying analog computations with continuous computations
12

, or, in other words, 

defining analog computations in opposition to digital computations. The essence of the former 

is sought in the fact that they make it possible to process and generate continuous (not only 

discrete) data represented in practice by continuous physical quantities. In short: AN-C 

analogicity is defined within the distinction discrete–continuous.
13

  

Having in mind both above-analysed meanings, it should be stated that in the 

methodology of computer science as well as in the general understanding of IT users, a 

crucial shift in meanings has occurred: from analogicity understood as analogousness towards 

analogicity understood as continuity. It was produced due to an engineer’s practice, in the 

result of which more and more universal analog machines were created and analog devices 

were gradually supplanted by digital machines that were more reliable.
14

 

Aiming at widening the scope of application of analog machines, the first process 

consisted in searching such a minimal set of processing components whose different 

arrangements (connections) would guarantee the performance of the broadest class of 

functions. Typical “minimal” components were amplifiers and integrators – adjusted to 

                                                      
10

 Cf. G. Ifrah, Historia powszechna cyfr, pp. 651–660. 
11

 However, it is unknown whether continuity (of, for example, real numbers) is an actual feature of the above-

mentioned processes as well as their results (results of measurements). Perhaps, this is only a feature of their 

mathematical description. Still, it is known that measuring instruments used in practice force discreteness of the 

obtained results just because they have finite accuracy. We will return to these issues at the end of the text.  
12

 See for example J.F. Costa, D. Graça, “Analog computers and recursive functions over the reals,” Journal of 

Complexity 5 (2003): 644–664. 
13

 It should be noticed that the distinction discrete–continuous (not being an opposition; see footnote 5) has its 

foundations in mathematics, in which discrete and continuous objects (for example discrete and continuous sets, 

discrete and continuous random variables, etc.) are distinguished in a rather standard way. The basis for the 

definition of the former are natural numbers (N), whereas of the latter – real numbers (R). Even at the level of 

naming the whole fields of mathematics, it is more and more common to differentiate discrete mathematics from 

continuous quantity mathematics (based on analysis). 
14

 Cf. G. Ifrah, Historia powszechna cyfr, pp. 651–662. 



process continuous signals. Because of the growing popularity of such solutions, analogicity 

gradually became identified with continuity of processed data. The characteristic feature of 

analogousness (that is the use of natural analoga to computations) receded into the 

background because universal analog devices performed certain combinations of several basic 

operations on continuous signals.
15

 

The second process – which consists in the far-reaching universalisation of machines, 

connected to the digitisation of signals and computations – caused, on the basis of 

counterbalance, that analog techniques being competitive with digital techniques became 

associated with, above all, non-digitality (non-discreteness), that is with continuity. 

The contemporary concept of analogicity in the sense of AN-C can be precisely 

expressed by mathematical models of analog-continuous computations.
16

 Following [Mycka, 

Piekarz 2004], they can be divided into: 1) continuous time models of continuous 

computation – for example, the GPAC model
17

 and 2) models of continuous computations 

performed in discrete steps – for example, the BSS model
18

.  

Because of both the idea of “full continuity” (that is the lack of any discretisation, also 

in the time aspect) and the historical antecedence, the GPAC model seems to be the worthiest 

of consideration.
19

 This model describes the way of processing continuous signals 

(mathematically speaking: continuous functions) with a minimum number of functional 

operations that at the level of model constitute nodes/vertices of an oriented graph which 

joints input and output signals. Such a graph presents the order in which an input signal is to 

be processed (sometimes simultaneously) by the components of the system that correspond to 

particular nodes. The before mentioned minimum number of operations includes: multiplying 

                                                      
15

 Cf. J. Mycka, Obliczenia dyskretne i ciągłe jako realizacje antropomorficznej i fizycznej koncepcji efektywnej 

obliczalności [Discrete and continuous computations as realisations of an anthropomorphic and physical concept 

of effective computability], in Światy matematyki. Tworzenie czy odkrywanie [Worlds of mathematics. Creating 

or discovering], eds. I. Bondecka-Krzykowska, J. Pogonowski, Poznań 2010, pp. 247–260. 
16

 Models of this type should be distinguished from models of analog-analogous computations (in the sense of 

ANa), which are in fact fragments of some physical theories. These theories connect defined mathematical 

structures (including: a mathematical operation performed by a given system) with defined physical processes. 

Due to the dedicated, hence non-universal character of computations of this type, the corresponding models can 

be called micro-models (they are not general). 
17

 See C. Shannon C., “Mathematical Theory of the Differential Analyzer,” J. Math. Phys. MIT 20 (1941): 337–

354. 
18

 See L. Blum, M. Shub, S. Smale, “On a theory of computation and complexity over the real numbers: NP-

completeness, recursive functions and universal machines,” Bull. Amer. Math. Soc. (NS) 21 (1989): 1–46. 
19

 Its methodological significance is supported by the fact that it has some valuable contemporary expansions, for 

example, the EAC model based on recursive real-valued functions. On the EAC model, see L. Rubel, “The 

extended analog computer,” Advances in Applied Mathematics 14 (1993): 39–50. On the real-valued functions, 

see “Recursion Theory on the Reals and Continuous-Time Computation,” Theoretical Computer Science 162 

(1996): 23–44. 



a function by a constant, adding a constant to a function, adding functions and integrating 

functions. 

 In engineering practice, the GPAC model is performed with the use of analog 

electronic circuits (in short: AEC) that process data on the basis of adequately configured 

operational amplifiers. I will present how they work in example 2. 

 

Example 2. In technical terms, every AEC is composed of a finite number of basic systems 

which create nodes of a net and electrical connections which connect nodes and conduct 

analog signals. Every basic system is an adequately configured (by adding external 

components) operational amplifier, which physically performs one simple mathematical 

operation, for example, summing, multiplying, comparing, differentiating or integrating.
20

 

Designed for a specific purpose (which can be, for example, finding solutions of a 

differential equation), an AEC functions in the following way: 1) the AEC input (which is one 

component or more) receives a particular function (for example, sinusoidal) in a continuous, 

real time fashion; 2) the continuously performed values of the function are carried to the 

subsequent AEC components (sometimes in a parallel way) and modified there; 3) the result 

(for example, the results of integrating the following “fragments” of the input function) is also 

successively generated in real time at the output.  

At any time, the user of AEC can measure the output signal and obtain a single result 

that he is interested in (for example, an integral result), observe the functions that are 

generated (for example, on the screen) and interpret them systematically as some functional 

results (which can be, for example, the results of differential equations). 

Designing the AECs to solve specific problems consists in combining adequately any 

number of freely chosen basic circuits (such as an adder or a comparator). Thus, the 

“programme” which performs a defined function is the physical structure of a circuit. 

 

Although the above-mentioned example (of an electronic realisation of a model) refers to 

specific technical solutions that were and still are used in practice, the existence of these 

solutions should not be treated as an argument for the actual continuity of computations 
                                                      
20

 Included in every basic system, an operational amplifier is a system with two inputs and one output. An ideal 

operational amplifier (a theoretical circuit) amplifies the signal to the extent that equals the infinity (in a real 

circuit, it is about maximally high amplification being almost approximate to the infinity). Without any external 

components, an amplifier works in the following way: the output signal is produced by multiplying the first input 

signal by “plus infinity” and adding it to the second input signal multiplied by “minus infinity.” If we insert 

resistors, the “infinity” will be replaced by a concrete quantity, which can be represented by a real number. 

Configurations that include capacitors (capacitance) realise the process of integration and differentiation. Cf. Z. 

Kulka Z., M. Nadachowski, Wzmacniacze operacyjne i ich zastosowanie [Operational amplifiers and their 

applications], part 2, Warsaw 1982. I would like to thank Jarosław Sokołowski, a participant of philosophical 

and informational seminars organised at the Warsaw University of Technology, for valuable information on 

analog electronic circuits. 



described by the GPAC model and other related models, since two doubts appear. Firstly, in 

every electronic circuit, the measurement of resulting values is always taken with some finite 

accuracy, which can unquestionably discredit the result (described theoretically as a 

continuous object). Secondly, it is unknown whether basic “continuous” operations, 

performed by, for example, operational amplifiers, are not actually, at a sufficiently low level 

of description, discrete operations.  

2. Particular methodological and philosophical issues 

There exist several interesting philosophical questions issuing from the formal investigations 

presented above. 

 

2.1. The empirization of computations and their reliability 

The first issue is directly related to the first way of understanding analogicity (AN-A) and 

concerns the reliability (in a narrow sense: accuracy) of computations based on the principle 

of natural analogy. As already indicated in point 1.2., the mathematical reliability of 

procedures of this type (that is efficiently using them to perform some mathematical 

operations) must depend on the level of adequacy of a theory that connects formulas and 

results of computations with physical reality (more accurately: processes that perform these 

computations).  

The mentioned theory – being the result of idealisation procedure, typical of empirical 

sciences, which consists in examining phenomena ignoring factors that are recognised as 

unimportant – is never hundred percent appropriate.
21

 Thus, if the results of mathematical 

operations are sought directly in the reality that is described by the theory (for example, 

through experiment, measurement, etc.), they must be distorted by the very same factors that 

have been omitted during idealisation. Metaphorically speaking: the procedure of idealisation 

works both ways. It allows to create a cognitively effective theory but trying to realise 

theoretical computations by referring to (not idealised) reality, it must cause mistakes. 

Performing computations with the use of empirical method requires an additional 

reflection on types of theories that justify this method well enough. In the light of remarks 

made in point 1.2, the problem of choosing between physical and biological theories arises. 

That is to say: should natural computations, which are more and more often used, be justified 

                                                      
21

 See W. Krajewski, Prawa nauki. 



only within physics (as it happens in the case of quantum computations and traditional analog 

techniques), or is referring to biology equally valid? 

 On the one hand, there is no doubt that animate systems, examined by biologists in 

their natural environment, demonstrate a huge level of effectiveness in solving problems 

(mainly adaptation problems). From the point of view of computer science, they can be 

treated as a “ready-to-use,” sophisticated product of natural evolution. On the other hand, 

biological theories are far less formalized than physical theories, hence they do not provide 

that good justification of computational effectiveness of (in this case: living) systems used. 

Perhaps, in the case of computer science that is oriented towards biology, we are doomed to 

create solutions by the process trial and error that is very unreliable (and can be partly 

justified by the fact that mechanisms and systems described by biology simply work well in 

nature). 

 

 2.2. The physical realisation of continuous (hyper)computations 

 

Another methodological issue is related to analog computations in the sense of AN-C, that is 

continuous. Theoretical analyses indicate that computations of this type – described, for 

example, with the use of a model of recursive real-valued functions – have the status of 

hypercomputations.
22

 This means that they allow solving problems that are out of reach for 

digital techniques which are formally expressed by the model of universal Turing machine.
23

 

One of such problems is the issue of solvability of diophantine equations.
24

  

Although the theory of continuous computations does predict that they have higher 

computational power than digital techniques, the important question about practical 

implementability of continuous computations arises.
25

 That is to say: if the physical world, the 

source of real data carriers and processes to process data, was discrete (quantised), we would 

never be able to perform any analog-continuous computations. 

The question about the separateness of the mind (or even the mind/brain understood as a 

biological system) from the physical world, to which real digital automaton belong, is related 

to this issue. Perhaps the fact that the mind’s computational power is higher than the power of 

                                                      
22

 In the definitional (semantic) sense, continuous computations are not equal to digital computations. This is 

because their constitutive feature, that is continuity, constitute a vital extension of one of constitutive features of 

traditional Turing computations, that is discreteness (see also footnote 5). 
23

 Cf. J. Mycka, Obliczenia dyskretne i ciągłe, pp. 247–260. 
24

 Cf. D. Harel, Rzecz o istocie informatyki. Algorytmika [On the essence of computer science. Algorithmics], 

Warsaw 2000. 
25

 Cf. J. Mycka, Obliczenia dyskretne i ciągłe, pp. 247–260. 



digital machines – which, according to some people, is proven by the observed ability of the 

mind to solve intuitively difficult mathematical problems
26

 – can be justified with the 

continuity of mental sphere (or even the continuity of nervous system).
27

 

 

2.3. Universal analog machines 

 

Probably the most crucial difference between analog computations (of both types) and digital 

techniques consists in the fact that only in the case of the latter, there is a universal executive 

programme that allows executing programmes provided from the outside on a digital machine 

correctly. On a mathematical level, a universal Turing machine corresponds to it.
28

  

In the case of analog-continuous computations, there are certain models of computations 

defined (such as the GPAC or EAC models), however, they “imply” that various specialised 

analog systems have to be constructed for different problems. Even if a model defines a 

minimal set of computations/elementary operations (whose different combinations are enough 

to realise any complex computations), there is still a question about a “universal” automaton 

that is able to simulate any specialised circuit (treated as a programme provided from the 

outside). 

 If such an automaton existed, it would be an analog equivalent of the universal Turing 

machine (UTM). The input would receive a signal that encodes an analog circuit U (its 

structure) and an input signal S of the circuit C. On this basis, the universal automata would 

simulate perfectly the operation of the circuit C for the signal S. In other words: for any 

possible circuit C and every possible input signals/data SD, the universal circuit UC would 

generate the same resulting signal SR as the circuit C would generate for the input SD.  

In the theory of analog-continuous computations, the described circuit is not defined, 

thus the question whether it is at all possible arises.
29

 If this is not, then what are the 

theoretical arguments behind it?  

                                                      
26

 Cf. W. Marciszewski, Racjonalistyczny optymizm poznawczy w Gödlowskiej wizji dynamiki wiedzy 

[Rationalist cognitive optimism in Gödel’s vision of dynamics of knowledge], in Przewodnik po epistemologii 

[A companion to epistemology], ed. R. Ziemińska, Kraków 2013. 
27

 The importance of the argument about “the continuity of nervous system” was also noticed by Alan Turing 

himself while he was writing about the hypothetical biological superiority of established mind over digital 

machines. Cf. A. M. Turing, “Computing Machinery and Intelligence,” Mind 49 (1950): 433–460.  
28

 See A. M. Turing, “On Computable Numbers, with an Application to the Entscheidungsproblem,” Proc. Lond. 

Math. Soc. 42 (1936): 230–265. 
29

 In case of a negative answer, analog-continuous computations would be characterised by irremovable 

weakness – especially in comparison to digital computations. Although analog circuits provided theoretically 

higher computational power than digital circuits, a programmable computer would not exist in their case. For 

every problem or a group of problems, a separate analog circuit would have to be designed.  



In relation to analog computations of the second type, called here in short analogous, 

the problem of the universal machine cannot be presented in the same way as it has already 

been done above, because such computations are, by definition, of local character. Let me 

remind that in their case, natural analoga to particular types of mathematical operations are 

searched for. However, one could ask about the maximalist physical (more broadly: natural) 

theory, on the basis of which natural analoga of all mathematical operations (or at least those 

that are useful) could be found. The existence of such a theory – especially in the light of 

results of research conducted by K. Gödel or, in our times, G. Chaitin
30

 – is indeed truly 

doubtful. 
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